
The experiments yielded the following interesting result: If the flow of liquid is 
additionally made turbulent in the forechamber of the nozzle (by inserting a 1 mm in diameter 
wire into it perpendicular to the axis), then a dip appears in the measured distributions 
at the center of the spray cone. This probably caused by the fact that turbulence, which 
results in breakup of primarily the most turbulent volumes of the liquid, plays a signi- 
ficant role in the breakup of the jet. 

i. 

. 

. 

4. 

LITERATURE CITED 

V. S. Valeev, A. V. Kudryavtsev, and G. M. Kuznetsov, "Experimental investigation of 
atomization of a liquid injected with a jet nozzle perpendicular to the direction of 
air flow," Izv. Vyssh. Uchebn. Zaved., Aviats. Tekhn., No. 3 (1984). 
Yu. A. Agureev, Yu. V. Burov, A. S. Bushmin, and S. I. Tarasov, "Automated data acquisi- 
tion and processing system for an apparatus with cryogenic temperatures," Inzh.-Fiz. 
Zh., 54, No. 5 (1988). 
V. A. Borodin, Yu. F. Dityatin, and L. A. Klyachko, Atomization of Liquids [in Russian], 
Mashinostroenie, Moscow (1967). 
S. S. Kutateladze and B. M. Borishanskii, Handbook of Heat Transfer [in Russian], 
Gosenergoizdat, Moscow (1959). 

FORMULATION OF PROBLEMS WITH MOVING PHASE-TRANSITION 

BOUNDARIES IN HYDROTHERMAL STRATA 

A. M. Maksimov, and G. G. Tsypkin UDC 536.23.553.065 

The study of heat and mass transfer processes in hydrothermal strata is of unquestionable 
interest for the design of systems for extracting geothermal energy, an alternative energy 
resource, as well as for a better understanding of the dynamics of thermal processes in the 
lithosphere. Hydrothermal systems are natural strata saturated with hot water, steam, or a 
water-steam mixture. A change in the external conditions (e.g., a change in the heat flux of 
the Earth or drilling of a well into the formation) results in filtration flow of water 
(steam), accompanied by water-steam phase transitions and a change in the temperature, 
pressure, and phase composition of the formation. The mathematical description is constructed 
on the basis of the laws of conservation of mass and energy and Darcy's law for two-phase non- 
isothermal filtration. The model is closed by using the phase diagram for water. The 
known models of heat and mass transfer in hydrothermal strata [1-4] have been formulated in 
terms of pressure and enthalpy. The water saturation in the case of a steam-water mixture is 
calculated from the water and steam densities and the enthalpies of the water, steam, and 
steam-water mixture. The use of enthalpy as the sought function presumes that the system of 
conservation equations is closed with the p-h diagram of water. In fact, this model, a 
realization of the well-known enthalpy approach to the description of phase transitions [5], 
does not explicitly contain a moving phase boundary, i.e., a surface of a strong discon- 
tinuity of the water saturation function. The approach described above, however, has 
some shortcomings. The boundary conditions must be given in terms of the enthalpy, which 
is difficult to do in the case of boundary conditions of the first and third kinds. More- 
over, the temperature field, which must be known for an understanding of the processes in 
the formation, remains undetermined. 

In this paper a mathematical model of heat and mass transfer processes with phase 
transitions in hydrothermal strata, is formulated in terms of the temperature, pressure, and 
saturation and admits the existence of moving phase-transition surfaces, which are strong 
discontinuities of saturation function. The solution is constructed within the framework of 
the generalized solution of the Stefan problem [6], in many ways resembling analogous solu- 
tions of problems of the freezing and thawing of soils [7, 8] and the decomposition of gaseous 
hydrates in natural strata [9]. 
/ .... 
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Mathematical Formulation of the Problem. A hydrothermal system will be taken to mean 
a porous medium, saturated with water, steam, or a mixture of the two. The heat and mass 
transfer processes and phase transitions will be considered within the following approxima- 
tion: the skeleton of the porous medium is incompressible and stationary, the steam is an 
ideal gas, the capillary effects are negligible, the local temperatures and pressures of the 
components of the medium coincide, and the viscosities are assumed to be functions of the 
temperature. 

The principal equations include the laws of conservation of mass for water and steam 

a 
m -OF Sgw -F div 9wVw = M, m o (1 --  S) Pst + div ~ s t  = - -  ~ ;  

the equations of Darcy's law 

k k 
Vw ~,w(T) /w(S) gradp,  Vst------ t~t(T) ~ t  (S)gradp;  

the states of the water and steam 

~w = %oH + ~(p - p~ - ~ ( r  - ~o)L p = % ~ r ;  

the curve of the interface on the p-T diagram [i0] 

lg p = A -t- B /T;  (1 )  

and the energy 

aat (Oe)eff+ div (9whwV w +PsthS~ ) = div (~efflrad T) 

( l e f t  ̀= mS~, w -if- m(l -- S)~st- ~- (1 --  m)%s, 

(oe)eff-.mSpw% F m(l --  S)ps~est+ (1 --  m)Pses). 

Here T is the temperature, p is the pressure, S is the water saturation, h is the enthalpy, 
p is the density, V is the filtration rate, M is the intensity of the phase transition, k is 
the permeability, f is the phase permeability, D is the viscosity, ~ is the compressibility 
factor, ~ is the thermal expansion coefficient, ~ is the thermal conductivity factor, m is 
the porosity; subscripts: w - water, st - steam, s - skeleton of the porous medium, and eff - 
effective value. 

After identity transformations, with allowance for the known relation 

dp ( t _ _ ~ T  ) (~ t ap) dh = CdT + ~ P aT 

the initial system of equations reduces to a system of three equations in T, p, and S. 
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Conditions at Moving Phase-Transition Boundaries. The initial and boundary conditions 
are given such that they are on either side of the equilibrium curve, in accordance with the 
phase diagram. In this case regions with different phase compositions should be separated 
by phase-transition surfaces, on which a strong discontinuity of the water saturation func- 
tion is admitted. The conditions on the phase-transition surfaces follow from the laws of 
conservation of mass and energy at discontinuities [ii]. 

[p un)]_  + = o, - u,O - 0, 1 + = o, 

where V is the velocity of the discontinuity, u is the velocity of the medium, and Q is the 
conductive heat flux; the subscript n denotes projection onto the normal. 

Let us consider the following types of discontinuity: 

i) the interface between the regions of steam (-) and steam-water mixture (+) 

k / ]st+ fw) 
p,'st ~TSSt grad p_ --  k ~PSt-~s t PW~w grad p+ -- mS+ (9w --  9st)Vn:; 

~,+ grad T+ --  s grad T_ --  kqP~ww grad p+ = mS+qpwV n 

(2) 

(3) 

(q = hst - h w is the heat of the phase transition); 

2) the interface between the regions of the steam-water mixture (-)and water (+) 

k / /st fw 
- -Pw~wgrad p+ + k (~t-~st-  I- pW-~w ) grad p_ = m( t  --  S_)(9w - - P s t )  Vn, 

Pst ]st 
%+ grad T+ -- %_ grad T_ - -  kq ]7-st grad p_ = m (1 -- S_) qpstV,~; 

3) the interface between the regions of steam (-) and water (+) 

pst .k-~ grad k ( ~s t ,  P - - -PW-~w)gradp+=m(gw- -Ps t )Vn '  

Pst tad %+ grad T+ --  %_ grad T_ --  kq -~sg p_ ---- mqpwVn. 

Moreover, the continuity conditions for the temperature and pressure and the phase transition 
(1) are satisfied for all types of discontinuities. 

We note that a functional relation between the pressure and temperature [phase equili- 
brium equation (2)] exists in the region of the steam-water mixture. This makes it possible 
to analyze the boundary conditions for the first and second types of discontinuities. The 
heat balance condition for a discontinuity of the first kind can be written as 

(%+ -- k q f w ~ l g r a d  T+ --  ~,_ grad T_ = mS+qpwV~ (B, = --  2,3 B). 
o n R . \  

(4) 
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On substituting the characteristic values of the parameters, we find that the term in 
parentheses in (4) vanishes at permeabilities k = i0 -is m 2 and is negative at higher permea- 
bilities. Since we are considering the extraction of heat carrier from a stratum, grad 
T+ > 0 and grad T_ > 0. But then the right side should be negative at k > i0 -i8 m =, which 

means that the boundary conditions at the phase-transition surface cannot be satisfied and, 
therefore, that such a surface does not exist. Only at very low permeabilities, therefore, 
are solutions possible with moving saturation discontinuities and they do not exist over a 
wide range of parameters. Such discussions also hold for the other types of discontinuities. 

Results of Numerical Calculations. The system of equations and the conditions at dis- 
continuities, as formulated above, in the one-dimensional case admit self-similar solutions, 
which correspond to constant values of the initial and boundary conditions on a stationary 
surface (borehole wall) for T, p, and S. The original initial-value and boundary-value 
problems for the partial differential equations reduce to the boundary-value problems for 
systems of ordinary differential equations. The solution of the latteris determined 
numerically by the method of parallel ranging [12]. 

In the one-dimensional formulation we consider the development of hydrothermal reservoir, 
in which initially steam coexists with water in a state of thermodynamic equilibrium. The 
extraction of heat carrier from the stratum presupposes a pressure drop in the borehole. It 
is natural to expect that, depending on the extraction conditions and the stratum parameters, 
the extracted heat carrier can be either steam or steanr-water mixture. Suppose that steam 
is extracted. Then an interface X(t) exists between the regions of steam and steanr-water 
mixture; conditions (2) and (3) are satisfied at the interface. 

/ /st+ _ ~ ) O p  ,dX 
9s 6p s tax _ 

ar aT ~w/w ap dX 
~+ 0.-7-.+ - -  )~- ~x - -  kq ~\~ Oz+ mS+qgw --~ 

(%+ = mS+L w + m(t  - -S+)  %st.+ (i - - r n ) ~ ,  ~,_ = m~scb (l --  rn))~s), 

and so are the continuity conditions for the temperature and pressure and the phase transi- 
tion 

T _ = T + = T , ,  p _ = p + = p , ,  l g p , = A + B / T , .  

The water saturation function S here has a discontinuity from the sought value of S+ to 
S_ = 0. The temperature T = T o and pressure p = p0 are given at the stationary wall x = 0. 

The initial conditions have the form T = To, p = P0, S = So, and log P0 = A + B/T 0 at t = 0. 

Since the initial state is a state of thermodynamic equilibrium, the equations in the 
zone of the steamr-water mixture should admit a change in the phase composition as a result of 
water-steam phase transitions. Analysis of the phase transition processes in such systems 
[7-9] shows that front model, which do not take volume phase transitions into account, are 
thermodynamically contradictory. 

The equations in the zone of the ste~ater mixture are written as 

+ 

\ ~% + - - , .  + + - -  + 
~t4)WoRT \ ~ ] ~ k ~-~w HstPwoRT 2 

H$_{PwoR T dT ~ t d T  ) Ox Ox Tu k~ w dS -}- I~st?woRT'TS i-"~x' ~ - - ~  

= o z  

(5) 

747 



(PO)eff p q )  OT ( q(l--S) 1) Op 

pq OS k ( [w(:~__~T)+ :st'q l:Opl ~ 

+--~ v,s~(ql -C~)-pwo ~w. or, Oz '@'~x ax (6) 
, / 

qpk d/siz,OS Op kqfs_t P O2p ~- ~,eff 2T 
mTIT~stidS Ox Ox = mR~stT Ox 2 m Ox 2' 

I 

lgp = A + B/T .  (7) 

The effective heat capacity here is (PC)ef f = mSpwC w + m(li7 S)PstCp + (i -- m)PsC s. The 
equations in the zone of the steam flow from (5) and (6), we set S = 0. 

The problem formulated at constant To, P0, So, T o , and p0 has a self-similar solution 
of the form T = T(~), p = p($), S = S(~), X = 7t I/2 and ~ = xt -I/2, whose determination 

reduces to numerical solution of the boundary-value problem for a system of boundary dif- 
ferential equations. In the calculations we used the approximation of the empirical data 
for the functions fw(S), fst(S), pw (T), Pst(T), [i0, 13] and the following values of the 
parameters: Pw0 = 1000kg/m 3, Ps = 2000kg/m s, i w=0.58W/m.K, i s =2.09W/m-K, Ist=0.02W/m.K, 

�9 C w = 4.19 kJ/kg'K, C s = 0.9 kJ/kg'K, Cp = 1.8kJ/kg'K, ~= 0.49"10 -9 Pa -I, ~ = 0.001K -~, m = 0.25, R= 

461J/kg'K, q = 1900 kJ/kg, Pst0 = 1.2"i0-5 Pa'sec, A = 5.44, and B = 2005.1K. 

Figure 1 shows the results of calculation at T o = 500 K, S o = 0.25, T o = 400 K, p0 = l0 s 
Pa, and k = 10 -18 m 2 and the dimensionless temperature T' = T/T 0 (solid line), pressure p' = 
P/P0 (dashed line), and saturation S' = S/S 0 (dash-and-dot line) as functions of the dimen- 
sionless self-similar variable ~' = ~(kp0/mPst0) -f/2 

The results of numerical experiments indicate that the steam zone becomes narrower as 
the permeability increases. The steam zone degenerates at a particular value of the perme- 
ability, depending on the other parameters of the problem. Physically, this corresponds to 
the removal of,steam-water mixture from the stratum. In the given case the mathematical 
model no longer contains moving saturation discontinuities and the phase transition takes 
place in the entire stratum. The boundary conditions at x = 0 change correspondingly. It is 
sufficient here to set the pressure of the steam-water mixture extracted from the stratum. 
The temperature of the mixture is determined from the condition of thermodynamic equilibrium 
and the saturation is the result of the solution of the problem. Figures 2 and 3 show 
examples of calculations at k = 10 -16 m 2 and k = 10 -14 m 2, respectively, for To = 500 K, 
S o = 0.5, and p0 = 105 Pa. 

The results of calculations within the framework of the proposed model indicate that 
in the range of high permeabilities, which is of practical interest, solutions with moving 
saturation discontinuities are not realized. This means that heat carrier is extracted 
from the stratum in its initial qualitative state. The form of the saturation distributions 
obtained during the solution of the problem is determined in many ways by the distinctive 
features of the combined filtration of water and steam at various permeabilities and is 
evidence of processes of partial condensation and steam formation in the stratum. 
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